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LETTER TO THE EDITOR 

A geometric phase for m = 0 spins 

J M Robbinst and M V Berry$ 
t Depamnent of Mathematics and Statistics, James clerk Manvell Building, The King’s 
Buildings. Mayiield Road, Edinburgh EH9 3% UK 
$ H H Wdls Physics Laboratory, TyndaU Avenue. Bristol BS8 ITL, UK 

Received 5 April 1994 

Abshact A I j m )  spin state in an adiabatically-cycled magnetic field acquires a geomkic phase 
of m times the solid angle described by B, so that form = 0 st8fes the geometric phase vanishes. 
However, if B is not cycled, but is made to w e n e  direction, an m = 0 state returns to itself 
and in so doing acquires a geometric phase factor of (-1)j. This phase is of a topological 
character; paramem space is the Ral pmjective plane, in which the phase distinguishes trivial 
f” non-hivial cycles. 

A spin- j particle in a slowly changing magnetic field is a canonical examge of the ge?metric 
phase (Berry 1984). The spin Hamiltonian H(B) is equal to B . J ,  where J is the 
spin angular momentum. The energy levels E,,,(B) = mBfi and eigenstates l jm(B))  are 
determined by B. If initially the spin is in the mth eigenstate and B is slowly taken round 
a closed cycle C, then (neglecting transitions) the spin remains in the mth state of the 
changing Hamiltonian and rehnns to itself up to a phase factor, part of which includes the 
geometric phase 

(1) 
B 

ym(C) = - V, d S  where V, = m- J, B 3 .  
The integral is taken over a surface S (in B-space) whose bounday is C. ym(C) is easily 
seen to be m times the solid angle subtended by C with respect to B = 0. 

From (I), it follows that the geometric phase vanishes for m = 0. The purpose of this 
letter is to point out the existence of a geometric phase for m = 0 stakes when the magnetic 
field is taken not through a cycle but rather a half-cycle, in which B + -B. Since 
I j m(-B)) = (phase factor) x I j - m f B ) ) ,  it follows that 

(2) 

Therefore, if B is slowly turned to -B, the state I j O(B)) returns to itself up to a purely 
geometrical phase factor (the dynamical phase J E, (B,)/fi dt vanishes for m = 0.) 

Because B(t) does not close for a half-cycle, we cannot compute y,+ from (I), in 
which the phase is expressed as a flux through a closed circuit in B-space. Instead we 
obtain y,, as the phase accumulated by a parallel-transported representation of the evolving 
state. For the half-cycle H in which B is rotated about the y-axis from Bi to -Bi at 
constant angular velocity n/T, such a representation is given by 

I j 0(-B)) = (phase factor) x I j O(B)). 
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where lj 0) is the m = 0 eigenstate of $, because 

Therefore the accumulated phase is given by 

The last equality in (5) is obtained by noting that (i) because the spherical harmonic %&, q4) 
(which corresponds to I j 0)) is rotationally symmetric about 9, a n-rotation about fj (under 
which x + -x and z + -z) has the same effect as the reflection P + -T, and (ii) 
c;.o(O, 4) has parity (-l)j. (Alternatively, one can observe that the second-to-last member 
of (5) is the Wigner D-mahix element D&(O, R, 0), which is equal to (-l)j according to 
a standard formula (see e.g. Sakurai 1985).) 

Equation (5) is our principal result. Note that for an m = 0 state to exist, j must be 
integra, for the phase to be non-trivial, j must be odd. 

Although (5) was obtained for the particular half-cycle H, it is easy to see that the 
geometric phase factor (-1)j is the same for an arbitrary half-cycle H’. To see this, note 
that by applying a fixed rotation and rescaling the magnitude of B along H’ (neither of 
which changes the geometric phase), we may assume that H’, like H, takes B from E9 
to - E L  Now consider the cycle C obtained by taking B from E9 to -EP along H’ 
and then from -B9 to E9 along -H (i.e. the reverse of H), as in figure 1. Clearly 
yo(C) = yo(H‘) - yo(H). Also, since C is closed, yo(C) = 0, from (1). Therefore 
YO(H’) = M(H). 

Figure 1. The cycle C on the sphere IlBll = B is composed of the WO halfsycles U‘ and 
-H. 

ItfoUows that yo is essentially topological, i.e. insensitive to smooth deformations of the 
path in B-space. The underlying topology is elucidated by considerations of the parameter 
space (each point of which determines the m = 0 eigenstate up to a phase.) While form # 0 
states, the parameter space M is (B} -0  (the origin is excluded because the eigenstates are 
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- degenerate there), for m = 0 states we can, according to (2). take parameter space to be 
M = ({B} -O)/(B - -B), i.e. threespace with the origin excluded and points related by 
reflection identified. Alternatively, we can fix the magnitude of B (the eigenstates depend 
only on its direction), and take parameter space to be P = Sz/(B - -Et), i.e. the sphere 
llBll= B-with antipodal points identified, or equivalently, the real projective plane. 

Both M and P are non-orientable, and both are doubly connected. That is, there are just 
two topologically distinct classes of cycles, namely trivial (i.e. conmtible) cycles taking 
B to B and non-trivial ones taking B to -B. The geometric phase factor is (-l)j for 
non-trivial cycles and 1 for trivial ones. 

A different topology underlies the well known sign change in the eigenstates of real 
(i.e. time-reversal invariant) Hamiltonians transported round a degeneracy (Herzberg and 
Longuet-Higgins 1963). An example is given by the j = 1 /Z spin Hamiltonian, provided we 
fix By = 0. Then parameter space is the punctured ( E x ,  BJ plane (the point of degeneracy 
at the origin is removed), and, from (I), the geometric phase factor is (-1)"' or (+l)'", 
according to whether a cycle encloses the origin an odd or even number of times. The 
topology of the punctured plane is different from that of the projective plane. Whiie the 
punctured plane is multiply connected (cycles can be classified by winding number), the 
projective plane, as explained above, is doubly connected. A consequence of this difference 
is that the degeneracy phase can be expressed as the line integral round a cycle of a 
(continuous) vector potential A, (in the present case A,,, = m(B,,O, -B,)/EZ),  whereas 
the m = 0 phase cannot. 

The space li? appears in a quite different context, namely in the treatment of identical 
particles in quantum mechanics (Laidlaw and DeWitt 1971, Leinaas and Myrheim 1977). 
Consider two particles in three dimensions with coordinates T, and TZ, and introduce the 
centre-of-mass and relative coordinates, R = (5-1 + ~ 2 ) / 2  and P = T I  - rz. respectively. 
If the particles are identical, the configuration (TI. TZ) is the same as {TZ, TI), so that T is 
to be identified with -T. If we exclude the point P = 0 (the particles are not allowed to 
coincide), we find that the relative coordinate space is just % (with B replaced by T). 

In their seminal analysis of identical particles in quantum mechanics, Leinaas and 
Myrheim (1977) showed that the spin-statistics theorem (in three dimensions) could be 
derived from the following postulate: when transported around a non-trivial cycle in the 
relative coordinate ?pace-Z, a two-particle spinor, in an eigenstate of total spin angular 
momentum J z  = (St + SZ)' with eigenvalue j ( j  + l), should acquire a sign factor (-111. 
That Leinaas and Myrheim's sign change is the same as the geometric phase calculated in 
(5) (for m = 0) suggests the possibility that it can be derived rather than postulated. Such 
a derivation has not yet been found. 

In this discussion we have emphasized adiabatic cycles. As shown by Aharonov and 
Anandan (1987), the adiabatic assumption is not necessary, and the geometric phase (5) 
arises in any (non-trivial) cyclic evolution from I j O(B)) to I j 0(-B)). 

The m = 0 geometric phase could be observed. One way is with a beam of spin-1 
atoms, polarized in the m = 0 state along a field B. The beam is split and inserted into 
an interferometer. In one arm, B is uniform. Along the other, B is twisted so that its 
directions at the end and beginning differ by 6'. As 6' is increased from 0 to I, the fringes 
should first disappear (when 0 = r / 2 )  and then reappear shifted by a half-spacing. It 
might seem peculiar that an m = 0 state, whose interaction energy with B is always zero, 
could nevertheless be rotated by B-gasping a ghost, as it were. But there is no paradox, 
because for these m = 0 states the direction of B is a unique axis of circular symmetry and 
(as detailed analysis confirms) this axis does turn adiabatically with B. 
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